The apoptotic protease-activating factor 1-mediated pathway of apoptosis is dispensable for negative selection of thymocytes.
نویسندگان
چکیده
Negative selection is a process to delete potentially autoreactive clones in developing thymocytes. Programmed cell death or apoptosis is thought to play an important role in this selection process. In this study, we investigated the role of apoptotic protease-activating factor 1 (Apaf1), a mammalian homologue of CED-4, in programmed cell death during the negative selection in thymus. There was no developmental abnormality in thymocytes from newborn Apaf1(-/-) mice in terms of CD4 and CD8 expression pattern and thymocyte number. Clonal deletion by endogenous male H-Y Ag of Apaf1-deficient thymocytes with transgenic expression of H-Y Ag-specific TCRs (H-Y Tg/Apaf1(-/-) thymocytes) was normally observed in lethally irradiated wild-type mice reconstituted with fetal liver-derived hemopoietic stem cells. Clonal deletion induced in vitro by a bacterial superantigen was also normal in fetal thymic organ culture. Thus, Apaf1-mediated pathway of apoptosis is dispensable for the negative selection of thymocytes. However, H-Y Tg/Apaf1(-/-) thymocytes showed partial resistance to H-Y peptide-induced deletion in vitro as compared with H-Y Tg/Apaf1(+/-) thymocytes, implicating the Apaf1-mediated apoptotic pathway in the negative selection in a certain situation. In addition, the peptide-induced deletion was still observed in H-Y Tg/Apaf1(-/-) thymocytes in the presence of a broad spectrum caspase inhibitor, z-VAD-fmk, suggesting the presence of caspase-independent cell death pathway playing roles during the negative selection. We assume that mechanisms for the negative selection are composed of several cell death pathways to avoid failure of elimination of autoreactive clones.
منابع مشابه
Apoptotic protease-activating factor 1 (Apaf-1) as a liable gene for spontaneous mutations in vitro
The apoptotic protease-activating factor 1 (Apaf-1) receives the death signal in the intrinsic ormitochondrial pathway of apoptosis. Upon the releasing of cytochrome c from theintermembrane space of mitochondria and binding to Apaf-1 molecules, a heptamericapoptosome complex is formed and triggers the downstream cascade of caspases. Here, for thefirst time we present spontaneous mutations and r...
متن کاملVav Regulates Peptide-specific Apoptosis in Thymocytes
The protooncogene Vav functions as a GDP/GTP exchange factor (GEF) for Rho-like small GTPases involved in cytoskeletal reorganization and cytokine production in T cells. Gene-targeted mice lacking Vav have a severe defect in positive and negative selection of T cell antigen receptor transgenic thymocytes in vivo, and vav-/- thymocytes are completely resistant to peptide-specific and anti-CD3/an...
متن کاملA Novel TCR Transgenic Model Reveals That Negative Selection Involves an Immediate, Bim-Dependent Pathway and a Delayed, Bim-Independent Pathway
A complete understanding of negative selection has been elusive due to the rapid apoptosis and clearance of thymocytes in vivo. We report a TCR transgenic model in which expression of the TCR during differentiation occurs only after V(D)J-like recombination. TCR expression from this transgene closely mimics expression of the endogenous TCRalpha locus allowing for development that is similar to ...
متن کاملFunctional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis.
The transcription factor Nur77 (NGFI-B), a member of the steroid nuclear receptor superfamily, is induced to a high level during T-cell receptor (TCR)-mediated apoptosis. A transgenic dominant-negative Nur77 protein can inhibit the apoptotic process accompanying negative selection in thymocytes, while constitutive expression of Nur77 leads to massive cell death. Nur77-deficient mice, however, h...
متن کاملA role for E2F1 in the induction of apoptosis during thymic negative selection.
Thymic negative selection is the process in which maturing thymocytes that express T-cell receptors recognizing self are eliminated by apoptotic cell death. The molecular mechanism by which this occurs is poorly understood. Notably, genes involved in cell death, even thymocyte death, such as Fas, Fas-ligand, p53, caspase-1, caspase-3, and caspase-9, and Bcl-2 have been found to not be required ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 168 5 شماره
صفحات -
تاریخ انتشار 2002